Showing posts with label Cancer. Show all posts
Showing posts with label Cancer. Show all posts

Thursday, June 3, 2010

Light at night

At the end of June, I will once more ride my bike from Vancouver to Seattle as part of the Ride to Conquer Cancer. In the weeks leading to this event, I log many, many kilometers on the saddle and inevitably my thoughts wander to cancer biology (and sometimes to the excruciating pain emanating from my behind). What triggers cancer? How can cancer be prevented? Why are some cancers like breast cancer more prevalent in industrialized countries? While researching the question, I came across a most unsuspected potential risk factor. I’m especially excited about this piece of relevant science because for once I won’t be writing about how eating healthy and sleeping more can cure all your ailments.

In the study, researchers took groups of female rats and exposed each group to different intensities of white light during the dark phase of their daily cycle (typical lab rats live in a programmed 12-hour light/12-hour dark cycle). After two weeks of this night cycle disruption, the researchers implanted a tumor (derived from human breast cancer tumors) in the female rats, and continued on with the night cycle disruption for many weeks. By the end of the experiment, the rats that had been exposed to the strongest intensity of light showed a marked increase in tumor growth rates. The brighter the light at night, the bigger the tumor.


Ok, light at night makes tumors grow faster, but can too much light be the cause for cancer? To answer this question, it’s best to turn to studies in humans. There is convincing evidence that women who work night shifts have a significantly higher risk of breast cancer. As well, women with the brightest bedrooms also have a higher risk of breast cancer. Scientists believe the reason for these correlations is a molecule called melatonin. At night, in the dark, your body produces melatonin, which is a very effective anti-cancer molecule. Several studies have looked at this link in more detail and have shown that melatonin can block the development and the growth of tumors in non-human models of breast cancer.


The light-cancer link is gaining interest, and researchers even started sprucing things up by using a catchy acronym, LAN (for light-at-night), so it’s something to keep in mind. Based on this research, I’ve decided to break my habit of flicking on the lights for my midnight nature calls. Would this habit necessarily give me cancer? No. But flicking on the lights does interrupt my production of melatonin, and on top of being an anti-cancer molecule, it’s also a powerful antioxidant. So I’m just trying to put all the chances on my side. That being said, I’m running into a different problem, which is waking up everyone in the building when I stub my big toe on the door frame. Nobody said staying healthy was easy…


Training for the ride, thinking about cancer

Reference: Circadian stage-dependent inhibition of human breast cancer metabolism and growth by the nocturnal melatonin signal: consequences of its disruption by light at night in rats and women. (2010) Blask D.E. et al. Integrative Cancer Therapies, 8(4):347-353

Tuesday, September 1, 2009

Conquering cancer one virus at a time

Back in June, I participated in The Ride to Conquer Cancer, a 2-day bike ride between Vancouver and Seattle to raise money for BC Cancer. It was an extremely moving, positive and rewarding experience. It also gave me a chance to eat a piece of humble pie when 70 year-old cancer survivors (identified by flags on their bikes, adding to their wind resistance) would pass me going up the hill. The good news is that at the end of the 272 km, I was still smiling:

The bad news is that I didn’t conquer cancer.

Cancer research is well-funded, popular, and has been around for quite some time. So why can’t we get rid of this disease? The problem with cancer is that it’s tremendously difficult to target. Unlike cells infected by viruses and bacteria, cancer cells don’t display any obvious flags that something is wrong with them, which makes them challenging to distinguish from healthy cells. Therefore, most treatments for cancer involve killing a number of healthy cells, and that’s just not ideal.

Progress is being made, though, as a recent publication in the journal PNAS suggests. In this paper, a collaboration between researchers in California and in Japan lead to the discovery of a new way of identifying tumors for easier removal. They rely on an unlikely ally: viruses.

The researchers genetically engineered a special type of virus to carry a gene that codes for a fluorescent protein, GFP (for Green Fluorescent Protein - as simple as that!). If all the cells in your body were to be infected by that virus, you would glow (kind of like the famous puppy). While this would immediately up your popularity ranking at any science party, it doesn’t do much for treating cancer. So the researchers took it one step further and engineered the virus so that it would only express the fluorescent protein (make the cell glow) if the cell has an active telomerase. Telomerase in an enzyme involved in the replication of cells. If the telomerase enzyme is active when it shouldn’t be, it can cause cells to divide indefinitely, creating tumors. In fact, it is thought that over 90% of human tumors show telomerase activation. To sum it up, cells are infected with a virus that has a gene for a fluorescent protein, but only cancerous cells have an active telomerase, the switch that turns on the fluorescence. The result? Glowing tumors.

The benefits of these findings are two-fold. First, glowing tumors mean that surgeons can precisely remove the tumors without having to also remove a chunk of healthy tissue “just to make sure”. Second, tumors have a nasty habit of hitching a ride in your lymphatic system or your blood and disseminate throughout your body, making it very difficult to take out every little bit of sprouting tumor. With this innovation, all those little disseminated tumors can be identified and removed. Those two benefits together could greatly reduce the chance of a relapse, an important consideration when treating cancer. The researchers tested their mutant virus in two different types of animal models of cancer (colon and lung) with great success. While I’m usually worried at the prospect of glowing body parts, this research could have a big impact on cancer treatment.

If I want to give myself a chance to conquer cancer in 2010, I should probably spend less time on the computer and more time on the bike...


Glowing tumors


Reference: In vivo internal tumor illumination by telomerase-dependent adenoviral GFP for precise surgical navigation. (2009) Kishimotoa, H., Zhaoa, M., Hayashia, K., Uratad, Y., Tanakac, N., Fujiwarac, T., Penmanf, S., and Hoffmana, R.M. Proc Natl Acad Sci 106(34):14514-7.

 
© 2009 Scientific Chick. All Rights Reserved | Powered by Blogger
Design by psdvibe | Bloggerized By LawnyDesignz